エンジン翼の関節格子機構の操作法開拓

衣川 摂哉

非限定運用に供する汎用輸送機のエンジン翼を無人機により開拓

翼体の関節格子機構の複雑性を抑えて広範囲な 飛行状態で効率的に目標加速度増分ベクトルを実現する

翼体の特に内翼について関節操作推定関数を見出す

段階的構成探索

第1段階 エンジン翼の形態系の設定

基準形態と基準形態からの変形の自由度を

有する形態系を設定する

第2段階 指標形態過程群の生成

飛行の速度。高度領域において形態系に加速度変化 を生じる指標形態過程群を生成する。

第3段階 仮想構成の生成

得られた指標形態過程群を用いて無人機に

適用する仮想構成を生成する

第4段階 無人機の飛行による有人探索用構成の探索
 コンピュータにより得られた仮想構成から
 無人機に適用する無人探索用構成を開発する。
 無人機を飛行させ無人探索用構成を作動させて
 構成探索を行い,有人飛行に耐える有人探索用構成
 を探索する。

探索により構成の変形自由度に過不足が生じた場合は第2,第3段階へ戻る.

第5段階 有人機の飛行による有人機構成の確定

第3図 内翼の関節格子機構

内翼構成探索の第4段階における関節操作推定関数の生成

速度,加速度,姿勢,形態,高度等の飛行状態を表す飛行変数群Pをパラメータ とし,目標加速度増分ベクトルに対し,関節角の操作量分布Dを出力する推定 則を飛行データにより更新して関節操作推定関数を生成する.

1.飛行によるデータ収集

最新の推定則で入力識別番号 q=1,2,...毎に操作量分布 $D_q = F_k(\vec{\Delta A}_q^t; P_q)$

を出力し、測定加速度増分ベクトル $\Delta \vec{A}_q^m$ を得る.

2.推定則の更新

 $D_{q}, \Delta \vec{A}_{q}^{m}$ を基に推定則を更新する.

3.推定則の精度判定

飛行変数空間全体で推定則が所定の精度に達しない場合

1.飛行によるデータ収集に戻る.

飛行変数空間全体で推定則が所定の精度に達した場合 最新の推定則を関節操作推定関数として終了. 内翼の構成探索の第4段階で用いる無人探索用構成を簡素化し効率的か つ高精度に形態過程を出力する関節操作推定関数を生成したい.

構成探索の第1段階(形態系の設定)で,より簡素な関節格子機構で関節操作 推定関数の生成を効率化,高精度化する推定則を見出すと共に,関節格子機 構を簡素化することが必要である.

そのため、内翼の形態系の初期設定を行い,初歩的な推定則の構築を試みる.

代表形態を形成する縦および横の断面機構を決定する. 関節と関節角の番号系を以下の図に示す.

機体固定座標系により各関節の座標を次の通り表す.

縦関節の座標 横関節の座標

$$(x_{1,j,g}, y_{1,j,g}, z_{1,j,g}) (x_{1,n,h}, y_{1,n,h}, z_{1,n,h})$$

第4図 縦断面機構および縦関節番号

第5図 横断面機構および横関節番号

第6図 縦関節角

3. 推定則の初期設定

第1回目の飛行で使用する第1推定則を設定する. 飛行変数群Pを指定し,入力 <u>A</u>^{*i*}を与える.

頂点関節の決定

最大操作角を与える縦関節である頂点関節を決定する.

3. 推定則の初期設定

第1回目の飛行で使用する第1推定則を設定する. 飛行変数群Pを指定し,入力 <u>A</u>^{*i*}を与える.

頂点関節の決定

最大操作角を与える縦関節である頂点関節を決定する.

機体固定座標系のXY平面に平行な第1基準面を取り, 内翼の代表形態の外形を第1基準面に投影し投影形を生成する. そしてZ軸と $\overrightarrow{A^{t}}$ に平行で投影形の中心点を通る第2基準面と 第1基準面の交線から投影形によって方向線分を切り取る. 第2基準面Z軸方向 $\overrightarrow{A^{t}}$ のZ座標の符号側に,方向線分を

半円の中心から $\vec{A}A^t$ の方向に半径を立て円周との交点から 方向線分へ投影線を下す.

- $\vec{\Delta A}^t$ 目標加速度増分ベクトル
- C 内翼の中心点 ●
- m1m2 方向線分の端点

直径とする半円を立てる.

- m3 方向線分の中点(半円の中心)
- m4 俯角半径と円周の交点の投影点

頂点関節 🏾 🗎

翼上下夫々の投影線に最も近接した

縦、横関節を頂点関節とする.

Ζ

Х

Y

S₄

m2

S₁

m3/

m1

m4

S₃

С

 S_2

投影線と投影形の交点のX, Y座標,は次式で表される.

$$X_{m,4} = X_{m,3} + \frac{r}{\left| \vec{\Delta A}^{t} \right|} \cdot X_{t}$$

$$Y_{m,4} = Y_{m,3} + \frac{r}{\left| \overrightarrow{\Delta A}^{t} \right|} \cdot Y_{t}$$

但し

$$X_{m,3} = \frac{X_{m,1} + X_{m,2}}{2}$$

$$Y_{m,3} = \frac{Y_{m,1} + Y_{m,2}}{2}$$

$$r = \frac{1}{2} \cdot \sqrt{(X_{m,1} - X_{m,2})^2 + (Y_{m,1} - Y_{m,2})^2}$$

縦関節の操作量の決定

頂点関節を有する縦断面機構(j=j_M)の操作量 翼上側

頂点関節の操作量

 $\Delta \theta_{1,j,g} = \lambda_X \cdot \theta_{1,j,g} \equiv \Delta \theta_{1,j,g}^{u,max} \quad (g = \hat{g}_1^{u,w})$

他の縦関節の操作量

$$\Delta \theta_{1,j,g} = \frac{g}{\hat{g}_{1}^{uw}} \cdot \Delta \theta_{1,j,g}^{u,max} (1 \le g \le \hat{g}_{1}^{uw} - 1)$$

$$\Delta \theta_{1,j,g} = \frac{ga_{1,j} - g - 1}{ga_{1,j} - 1 - \hat{g}_{1}^{uw}} \cdot \Delta \theta_{1,j,g}^{u,max} (\hat{g}_{1}^{uw} + 1 \le g \le ga_{1,j} - 1)$$

翼下側

頂点関節の操作量

$$\Delta\theta_{1,j,g} = -\lambda_X \cdot \theta_{1,j,g} \equiv \Delta\theta_{1,j,g}^{l,max} \text{ (} g = \hat{g}_1^{lw} \text{)}$$

他の縦関節の操作量

$$\Delta \theta_{1,j,g} = \frac{g - ga_{1,j} - 1}{\hat{g}_{1}^{lw} - 1 - ga_{1,j}} \cdot \Delta \theta_{1,j,g}^{l,max} (ga_{1,j} \le g \le \hat{g}_{1}^{lw} - 1)$$

$$\Delta \theta_{1,j,g} = \frac{G_1^w - g - 1}{G_1^w - \hat{g}_1^{lw}} \cdot \Delta \theta_{1,j,g}^{l,max} \quad \text{(} \hat{g}_1^{+w} + 1 \le g \le G_1^w \quad \text{)}$$

 $G_1^w = \begin{cases} G_{1,j} \quad (縱断面機構A型) \\ gb_{1,j} \quad (縱断面機構B型) \end{cases}$

頂点関節を有しない縦断面機構($1 \le j \le J_{1,j} \ne j_M$)の操作量

$$\kappa_{y} = \begin{cases} \frac{j-1}{j_{M}-1} & (1 \le j \le j_{M}) \\ \frac{J_{1}-j}{J_{1}-j_{M}} & (j_{M}+1 \le j \le J_{1}) \end{cases}$$

$$G_{1}^{w} = \begin{cases} G_{1,j}(縱断面機構A型) \\ gb_{1,j} & (縱斷面機構B型) \end{cases}$$

を用いて

翼上側

$$\Delta \theta_{1,j,g} = \kappa_{y} \cdot \lambda_{X} \cdot \theta_{1,j,g} \equiv \Delta \theta_{1,j,g}^{u,max} \qquad (g = \hat{g}_{1}^{u,w})$$

$$\Delta \theta_{1,j,g} = \frac{g}{\hat{g}_{1}^{u,w}} \cdot \Delta \theta_{1,j,g}^{u,max} \qquad (1 \le g \le \hat{g}_{1}^{u,w} - 1)$$

$$\Delta \theta_{1,j,g} = \frac{ga_{1,j} - g - 1}{ga_{1,j} - 1 - \hat{g}_{1}^{u,w}} \cdot \Delta \theta_{1,j,g}^{u,max} \qquad (\hat{g}_{1}^{u,w} + 1 \le g \le ga_{1,j} - 1)$$

翼下側

$$\Delta \theta_{1,j,g} = -\kappa_{y} \cdot \lambda_{X} \cdot \theta_{1,j,g} \equiv \Delta \theta_{1,j,g}^{l,max} \qquad (g = \hat{g}_{1}^{l,w})$$

$$\Delta \theta_{1,j,g} = \frac{g - ga_{1,j} - 1}{\hat{g}_{1}^{l,w} - 1 - ga_{1,j}} \cdot \Delta \theta_{1,j,g}^{l,max} \qquad (ga_{1,j} \leq g \leq \hat{g}_{1}^{l,w} - 1)$$

$$\Delta \theta_{1,j,g} = \frac{G_{1}^{w} - g - 1}{G_{1}^{w} - \hat{g}_{1}^{l,w}} \cdot \Delta \theta_{1,j,g}^{l,max} \qquad (\hat{g}_{1}^{l,w} + 1 \leq g \leq G_{1}^{w})$$

横関節の操作量の決定

頂点関節を有する横断面機構(*n*=*n_M*)の操作量 翼上側

頂点関節の操作量

 $\Delta \varphi_{1,n,h} = \lambda_{y} \cdot \varphi_{1,n,h} \equiv \Delta \varphi_{1,n,h}^{u,max}$

$$(h = \hat{h}_1^{uw})$$

他の横関節の操作量

$$\Delta \varphi_{1,n,h} = \frac{h}{\hat{h}_{1}^{uw}} \cdot \Delta \varphi_{1,n,h}^{u,max} \qquad (1 \le h \le \hat{h}_{1}^{uw} - 1)$$

$$\Delta \varphi_{1,n,h} = \frac{2(J_{1} - 1) - h}{2(J_{1} - 1) - \hat{h}_{1}^{uw}} \cdot \Delta \varphi_{1,n,h}^{u,max} \qquad (\hat{h}_{1}^{uw} + 1 \le h \le 2(J_{1} - 1))$$

翼下側

頂点関節の操作量

 $\Delta \varphi_{1,n,h} = -\lambda_y \cdot \varphi_{1,n,h} \equiv \Delta \varphi_{1,n,h}^{l, max} \qquad (h = \hat{h}_1^{lw})$

他の横関節の操作量

$$\Delta \varphi_{1,n,h} = \frac{h - (2J_1 - 1)}{\hat{h}_1^{l_w} - 1 - (2J_1 - 1) + 1} \cdot \Delta \varphi_{1,n,h}^{l,max} \qquad (2J_1 - 1 \le h \le \hat{h}_1^{l_w} - 1)$$

$$\Delta \varphi_{1,n,h} = \frac{4(J_1 - 1) - h}{4(J_1 - 1) - \hat{h}_1^{l_w}} \cdot \Delta \varphi_{1,n,h}^{l,max} \qquad (\hat{h}_1^{l_w} + 1 \le h \le 4(J_1 - 1))$$

頂点関節を有しない横断面機構(1≤n≤na1,n≠n_M)の操作量

$$\kappa_{x} = \begin{cases} \frac{n}{n_{M}} & (1 \le n \le n_{M}) \\ \\ \frac{na_{1} - n_{M}}{na_{1} - n_{M}} & (n_{M} + 1 \le n \le na_{1}) \end{cases}$$

を用いて

翼上側

頂点関節の操作量

 $\Delta \varphi_{1,n,h} = \kappa_x \cdot \lambda_y \cdot \varphi_{1,n,h} \equiv \Delta \varphi_{1,n,h}^{u,max} \qquad (h = \hat{h}_1^{uw})$

他の横関節の操作量

 $\Delta \varphi_{1,n,h} = \frac{h}{\hat{h}_{1}^{uw}} \cdot \Delta \varphi_{1,n,h}^{u,max} \qquad (1 \le h \le \hat{h}_{1}^{uw} - 1)$ $\Delta \varphi_{1,n,h} = \frac{2(J_{1} - 1) - h}{2(J_{1} - 1) - \hat{h}_{1}^{uw}} \cdot \Delta \varphi_{1,n,h}^{u,max} \qquad (\hat{h}_{1}^{uw} + 1 \le h \le 2(J_{1} - 1))$

翼下側

頂点関節の操作量

 $\Delta \varphi_{1,n,h} = -\kappa_x \cdot \lambda_y \cdot \varphi_{1,n,h} \equiv \Delta \varphi_{1,n,h}^{l,max} \qquad (h = \hat{h}_1^{lw})$

他の横関節の操作量

$$\Delta \varphi_{1,n,h} = \frac{h - (2J_1 - 1)}{\hat{h}_1^{lw} - 1 - (2J_1 - 1) + 1} \cdot \Delta \varphi_{1,n,h}^{l,max} \quad (2J_1 - 1 \le h \le \hat{h}_1^{lw} - 1)$$

$$\Delta \varphi_{1,n,h} = \frac{4(J_1 - 1) - h}{4(J_1 - 1) - \hat{h}_1^{lw}} \cdot \Delta \varphi_{1,n,h}^{l,max} \quad (\hat{h}_1^{lw} + 1 \le h \le 4(J_1 - 1))$$

4. 飛行測定データによる推定則の更新

第k推定則を更新し第k+1推定則を生成する.

4-1.確定点の生成

第k飛行で入力目標 \vec{AA}_{q}^{t} $(q=1,2,\cdots)$ に対し得られる第k推定則 による出力 $F_{k}(\vec{AA}_{q}^{t}; P_{q})$ に測定ベクトル \vec{AA}_{q}^{m} を対応付ける.

$$D_q^m = F_{k+1}(\vec{\Delta A_q^m}; P_q)$$
$$\equiv \vec{F_k}(\vec{\Delta A_q^t}; P_q)$$

4-2.領域更新

4-2-1. $|\vec{\Delta A}_q^m - \vec{\Delta A}_q^t| \ge \delta$ を満たす場合 $\vec{\Delta A}_q^t$ に対する推定則の更新 $\vec{\Delta A}_q^t - \vec{\Delta A}_q^m$ に対する第k推定則による出力 D_q^{mt} を D_q^m に重ね合わせる. $D_q^t = F_{k+1}(\vec{\Delta A}_q^t; P_q)$ $\equiv D_q^m + D_q^{mt}$ $= F_{k+1}(\vec{\Delta A}_q^m; P_q) + F_k(\vec{\Delta A}_q^t - \vec{\Delta A}_q^m; P_q)$

第9図 ベクトル関係図1

 $\vec{\Delta A}_{q}^{t}$ を中心とする $|\vec{\Delta A}^{t} - \vec{\Delta A}_{q}^{t}| < \varepsilon$ を満たす $\vec{\Delta A}^{t}$ 領域の推定則更新

$$\vec{\Delta A}_{q}^{t}$$
 に対する操作量 $D_{q}^{t} = F_{k+1}(\vec{\Delta A}_{q}^{t}; P_{q})$ から
 $\vec{\Delta A}^{t}$ に対する操作量を生成する.

第10図 ベクトル関係図2 最初に機体固定座標系で ΔA_q^t : (X_q, Y_q, Z_q) , ΔA^t : (X_t, Y_t, Z_t) を表 し、 Z_q の符号の向き、 X_q から X_t への変化の向き、 Y_q から Y_t への変化の向きに翼体の反りを増す.

第11図 形態変形図

 $\vec{\Delta A}_{q}^{t}:(X_{q},Y_{q},Z_{q})$ に対する $\vec{\Delta A}^{t}:(X_{t},Y_{t},Z_{t})$ の偏差割合を定義する.

$$\mu_{X} \equiv \frac{X_{t} - X_{q}}{\left|X_{q}\right|}$$

Y方向の偏差割合

$$\mu_{Y} \equiv \frac{Y_{t} - Y_{q}}{|Y_{q}|}$$

そして $\vec{\Delta A}^{t}$ に対する縦関節操作量を次式により生成する. $\Delta \theta_{1,j,g} = (1 + c_x | \mu_x |) \cdot \Delta \theta_{1,j,g}^{q}$

 c_x を縦関節番号 g 毎に与える.

△A^t に対する横関節操作量を次式により生成する.

 $\Delta \varphi_{1,n,h} = (1 + c_y |\mu_y|) \cdot \Delta \varphi_{1,n,h}^q$

 c_y を横関節番号 h 毎に与える.

5. 結論

飛行変数群 Pを固定し

第1回目の飛行で使用する第1推定則の初歩的な設定を行った. $\left| \vec{\Delta A}_{q}^{m} - \vec{\Delta A}_{q}^{t} \right| > \delta$ の場合の飛行測定データによる推定則の初歩的な領 域更新案を明確化した.

6. 今後の課題 1.飛行測定データによる推定則の更新の更なる具体化 $\vec{\Delta A}_{a}^{t}$ $\left| \vec{\Delta A}_{a}^{m} - \vec{\Delta A}_{a}^{t} \right| > \delta$ の場合 $\vec{\Delta A_a^m}$ を中心とする $|\vec{\Delta A^t} - \vec{\Delta A_a^m}| < \varepsilon$ を満たす領域の推定則更新 $\left| \vec{\Delta A}_{a}^{m} - \vec{\Delta A}_{a}^{t} \right| < \delta$ の場合 \vec{AA}_{A}^{m} を中心とする $\vec{AA}_{A}^{n} = \vec{AA}_{A}^{m} < \delta$ 2. 飛行変数群 P に関する領域推定 $\vec{\Delta A}_{a}^{t}$ を進め,関節操作推定則および更新法を探求する.